登录    |    注册

您好,欢迎来到澳门新葡新京网赌!

澳门新葡新京首页>澳门新葡新京网赌期刊>本期导读>测量多阶磁梯度张量的磁传感器阵列

测量多阶磁梯度张量的磁传感器阵列

99    2019-08-27

¥0.00

全文售价

作者:张涛, 王新华, ZIA Ullah

作者单位:北京工业大学机械工程与应用电子技术学院, 北京 100124


关键词:传感器阵列;一阶磁梯度张量;二阶磁梯度张量;地磁场;插值;磁源定位


摘要:

为实现多阶磁梯度张量的准确测量,提出一种磁传感器阵列。阵列由9个三轴磁传感器组成,在平面呈菱形排列。根据张量对称性,提出一阶及二阶磁梯度张量计算方法。采用Floater-Hormann有理插值完成测量盲点的修正。根据磁偶极子原理建立仿真模型,研究阵列在地磁场和噪声背景下的一阶及二阶磁梯度张量测量精度。仿真结果表明,提出阵列在磁梯度张量测量精度、完整性方面优于十字形阵列和六面体阵列。基于一阶和二阶磁梯度张量的定位应用也可证明所提出阵列的有效性。


A sensor array for multiple-order magnetic gradient tensor measurement
ZHANG Tao, WANG Xinhua, ZIA Ullah
Department of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
Abstract: A magnetic sensor array was proposed to measure multiple-order magnetic gradient tensor (MGT) accurately. The array was composed of 9 three-axis magnetic sensors and arranged in the form of diamond on the plane. According to tensor symmetry, the calculation method of different-order MGT was proposed. Floater-Hormann rational interpolation was adopted to complete blind spot amendment. According to simulation model based on magnetic dipole theory, the effectiveness of first-order and second-order MGT was researched under geomagnetic field and noise backgrounds. The simulation results showed that the proposed array outperforms cross and hexahedron array in terms of measurement precision and integrity. The application of magnetic source positioning based on first-order and second-order MGT was carried out to illustrate the proposed array of effectiveness.
Keywords: sensor array;first-order magnetic gradient tensor;second-order magnetic gradient tensor;geomagnetic field;interpolation;magnetic source positioning
2019, 45(8):93-99  收稿日期: 2018-11-22;收到修改稿日期: 2019-01-18
基金项目: 国家重点研发计划项目(2017YFC0805005-1);北京市教育委员会科研计划项目资助(KZ201810005009);中国博士后基金(2018T110020)
作者简介: 张涛(1989-),男,山西太原市人,博士研究生,研究方向为管道地磁检测
参考文献
[1] 陈海龙,王长龙,左宪章,等.磁记忆梯度张量测量信号预处理方法[J].系统工程与电子技术, 2017, 39(3):488-493
[2] SONG Q, DING W, PENG H, et al. A new magnetic testing technology based on magnetic gradient tensor theory[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2017, 59(6):325-329
[3] LEE K, LI M. Magnetic tensor sensor for gradient-based localization of ferrous object in geomagnetic field[J]. IEEE Transactions on Magnetics, 2016, 52(8):1-10
[4] 张朝阳,肖昌汉,阎辉.磁性目标的单点磁梯度张量定位方法[J].探测与控制学报, 2009, 31(4):44-48
[5] MA G, DU X. An improved analytic signal technique for the depth and structural index from 2D magnetic anomaly data[J]. Pure&Applied Geophysics, 2012, 169(12):2193-2200
[6] 陈海龙,王长龙,朱红运.基于磁梯度张量的金属磁记忆检测方法[J].仪器仪表学报, 2016, 37(3):602-609
[7] 于振涛,吕俊伟,许素芹,等.运动平台的磁性目标实时定位方法[J].哈尔滨工程大学学报, 2015, 36(5):606-610
[8] YIN G, ZHANG Y, LI Z, et al. Detection of ferromagnetic target based on mobile magnetic gradient tensor system[J]. Journal of Magnetism&Magnetic Materials, 2016, 402:1-7
[9] LIU R, WANG H. Detection and localization of improvised explosive devices based on 3-axis magnetic sensor array system[J]. Procedia Engineering, 2010, 7(12):1-9
[10] 万成彪,潘孟春,张琦,等.基于张量特征值和特征向量的磁性目标定位[J].吉林大学学报(工), 2017, 47(2):655-660
[11] NARA T, SUZUKI S, ANDO S. A closed-form formula for magnetic dipole localization by measurement of its magnetic field and spatial gradients[J]. IEEE Transactions on Magnetics, 2006, 42(10):3291-3293
[12] SUI Y, LESLIE K, CLARK D. Multiple-order magnetic gradient tensors for localization of a magnetic dipole[J]. IEEE Magnetics Letters, 2017, 8:1-5
[13] YIN G, ZHANG Y, FAN H, et al. Magnetic dipole localization based on magnetic gradient tensor data at a single point[J]. Journal of Applied Remote Sensing, 2014, 8(1):1-18
[14] 李光,随阳轶,刘丽敏,等.基于差分的磁偶极子单点张量定位方法[J].探测与控制学报, 2012, 34(5):50-54
[15] FLOATER M, HORMANN K. Barycentric rational interpolation with no poles and high rates of approximation[J]. Numerische Mathematik, 2007, 107(2):315-331
[16] 于振涛,吕俊伟,樊利恒,等.基于磁梯度张量的目标定位改进方法[J].系统工程与电子技术, 2014, 36(7):1250-1254

Xml地图